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Abstract. We show that different non-conventional superconductors have one fundamental feature in com-
mon: pair eigenstates of the Hamiltonian are repulsion-free, the W = 0 pairs. In extended Hubbard
models, pairing can occur for reasonable parameter values. For (N, N) nanotubes the binding energy of
the pair depends strongly on the filling and decreases towards a reduced but nonzero value for the graphite
sheet N → ∞.

PACS. 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating
valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) – 73.22.-f Electronic
structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals – 73.63.Fg Nanotubes

There is experimental evidence that the critical tempera-
ture Tc in alkali-graphite intercalation compounds (GIC)
CxM (where M is a given alkali metal) grows as x de-
creases [1]. Under high-pressure, high metal concentra-
tion samples such as C6K, C3K, C4Na, C3Na, C2Na,
C2Li have been synthesized; for C2Na the value of Tc

is 5 K while for C2Li, Tc=1.9 K; quite recently potas-
sium [2] and lithium [3] have been intercalated also in
single- and multi-wall carbon nanotubes [4] up to high
concentration (the highest metal concentration was ob-
tained with lithium in C2Li) and a net charge transfer
was observed between the alkali-metals and the carbon
atoms. The alkali-metals cause little structural deforma-
tion, but increase the filling of the original bands. Nan-
otubes close to half filling are deemed to be Luttinger liq-
uids down to milli-kelvin temperatures [5,6]. In this letter
we use the Hubbard Hamiltonian H on the honeycomb
lattice to represent the valence bands of carbon single-
wall (N,N) nanotubes and propose a symmetry-driven
configuration interaction pairing mechanism which works
away from half-filling. We present analytic expressions for
the effective interaction and obtain the binding energy for
(N,N) armchair nanotubes; in the case N = 1 we ver-
ify these analytic results by exact diagonalization and get
high-precision agreement. Starting from the undoped sys-
tem we find that the pair binding energy grows as the
number of electrons per C atom increases. Furthermore,
we obtain stronger binding in nanotubes than in graphite
sheets and this suggests a higher critical temperature for
the former. This is also supported by the measurements

a e-mail: cini@roma2.infn.it

of a Tc ≈ 15 K in the 4 angstrom single-wall nanotube
(SWNT) by Tang et al. [7].

Using standard notation, the full Hamiltonian reads

H = H0 +W

= t
∑
〈r,r′〉

∑
σ

(
c†r,σcr′,σ + h.c.

)
+ U

∑
r

n̂r,↑n̂r,↓, (1)

where r denotes the honeycomb site, the sum runs over
the pairs 〈r, r′〉 of nearest neighbour carbon atoms and t is
the hopping parameter. The one-body eigenvalues ε±(k),
(– for the bonding and + for the antibonding bands) are
readily obtained, and the Fermi line has C2v symmetry
for the nanotubes (C6v for the graphite sheet). Here, we
assume that the Fermi level εF lies in the + band. The
Hamiltonian in equation (1) admits two-body singlet eigen-
states with no double occupancy and we shall refer to
them as W = 0 pairs. The particles forming a W = 0 pair
have no direct interaction and are the main candidates to
achieve bound states in purely repulsive Hubbard models
already used for the cuprates [8–10]. We note that such
states are also building bricks of the ground state of Hub-
bard and related models at half filling [11–13].

Recently we obtained [10,14] a general criterion to get
all the W = 0 pairs. We can do that in terms of the
Optimal group G of the Hamiltonian, that we define as a
symmetry group that justifies the degeneracy of the single
particle energy levels. We may say that an irreducible rep-
resentation (irrep) η is represented in the one-body spec-
trum of H if at least one of the one-body levels belongs
to η. Let E be the set of the irreps of G which are repre-
sented in the one-body spectrum of H (E includes all the
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irreps when G is Abelian). Let |ψ〉 be a two-body eigen-
state of the kinetic energy H0 with vanishing z component
of the spin. Then, it holds the W=0 Theorem:

η /∈ E ⇔WP (η)|ψ〉 = 0 (2)

where P (η) is the projection operator on the irrep η. In
other terms, any nonvanishing projection of |ψ〉 on an ir-
rep not contained in E , is an eigenstate of H0 with no
double occupancy. The singlet component of this state is
a W = 0 pair. Conversely, any pair belonging to an irrep
represented in the one-body spectrum must have positive
W expectation value. If a subgroup of G is available, the ⇒
implication still holds. Using the space group, we find that
in the vanishing quasi-momentum sector the only W = 0
pairs belong to the pseudoscalar irrep A2. Let (a, b) de-
note the basis of the Bravais lattice and u (k, ζ) the pe-
riodic part of the Bloch function of quasi-momentum k,
with ζ = a, b. The pair wavefunction reads [15]

ψ
[A2]
ζ1,ζ2

(k,R1,R2) = sin (kx(X1 −X2))

× 1√
2

[
u∗ (k, ζ1) u∗ (−k, ζ2) eiky(Y1−Y2)

−u∗ (k, ζ2)u∗ (−k, ζ1) e−iky(Y1−Y2)
]
χ0, (3)

with Ri = (Xi, Yi) the origin of the cell where the
particle i lies. We can verify by direct inspection that
ψ

[A2]
ζ1,ζ2

(k,R1,R2) vanishes for X1 = X2, that is the two-
body singlet wavefunction vanishes if the particles lie on
the same annulus of the (N,N) tube. As a consequence
ψ

[A2]
ζ1,ζ2

(k,R1,R2) is an eigenstate of the kinetic energy H0

[with eigenvalue 2ε(k)] and of the on-site Hubbard repul-
sion W with vanishing eigenvalue of the latter, that is
ψ

[A2]
ζ1,ζ2

(k,R1,R2) is a W = 0 pair. Remarkably, ψ[A2] = 0
when the transverse component ky = 0.

The effective interaction Weff between the particles of
a W = 0 pair can be obtained analytically by a canonical
transformation in the spirit of reference [9]. Letting
n

(0)
ν (p) denote the non-interacting occupation number in

band ν with wavevector p, we find

Weff(k,k′, E) =

2
∑

Ô∈C2v

χ(A2)(Ô)
∑
p,ν

[
1 − n

(0)
+ (Ôk′ + k + p)

]
n(0)

ν (p)

× Uν(Ôk′ + k + p,−k, Ôk′,p)
ε+(Ôk′ + k + p) − εν(p) + ε+(k′) + ε+(k) − E

× Uν(k,p, Ôk′ + k + p,−Ôk′) (4)

where χ(η)(Ô) is the character in η of the opera-
tion Ô of C2v, E is the interacting pair energy and
Uν(k1,k2,k3,k4) is the interaction vertex, with incom-
ing legs k3 and k4 in band + and outgoing k1 in band +

Fig. 1. Comparison between ∆ and ∆̃(4) in units of t
versus U/t.

and k2 legs in band ν. The effective Schrödinger equation
for the pair reads

[2ε(k)+WF + F (k, E)] ak

+
∑

k′∈D/4

Weff(k,k′, E)ak′ = Eak, (5)

where WF is the first-order self-energy shift and

F (k, E) = −2δ(k− k′)

×
∑
p,ν

∑
q

[1 − n
(0)
+ (k + p− q)] [1 − n

(0)
+ (q)] n(0)

ν (p)
ε+(k + p + q) − εν(p) + ε+(q) + ε+(k) − E

× |Uν(k,p,k + p − q,q)| 2 (6)

is the forward scattering term which does not contains
any direct interaction between the particles of the pair.
Equation (5) requires a self-consistent calculation of E
(since Weff and F are E-dependent). The indices k and k′
run over 1/4 of the empty part of the FBZ and we denoted
such a set of wavevectors as D/4. We show below that E =
2εF +WF +Fmin(kF )+∆, with a positive binding energy
−∆ of the W = 0 pair; here Fmin(kF ) is the minimum
value of F (k, E) among the kF -wavevectors on the Fermi
line.

We got a direct verification that pairing actually oc-
cours by exact diagonalization for the (1, 1) nanotube of
length L = 2 (in units of the lattice spacing) and pe-
riodic boundary conditions. We define, following refer-
ences [8,16],

∆̃(N + 2) = E(N + 2) +E(N ) − 2E(N + 1), (7)

where E(N ) is the ground state energy with N electrons
(referenced to the electron vacuum); |∆̃(N + 2)| is one
definition of the pairing energy. In previous studies ofW =
0 pairing in finite systems we found [8,10,17] that at least
at weak coupling ∆̃ agrees well with ∆ as obtained by
the canonical transformation. For the (1, 1) nanotube with
N = 2, we can see in Figure 1 that the agreement between
∆̃(4) and ∆ is again very good up to U/t ≈ 1. However,
we emphasize that ∆̃(4) decreases up to a characteristic
value of U/t ∼ 4÷ 5, where a minimum is reached [15]; at
the minimum ∆̃(4) ∼ −0.018 t. The ratio of the second
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Table 1. Pair binding energy −∆ (in units of 10−3t) and average effective interaction V (in units of t) for (N, N) nanotubes
of various lengths L, as a function of the Fermi energy εF (in units of t). Numerical values were computed U/t = 2.5 for
illustration.

L N = 2 N = 4 N = 6

10

εF 0.8 0.9 1.0 1.1

−∆ 86 86 82 84

−V 2.5 2.5 2.4 2.8

εF 0.8 0.9 1.0 1.1

−∆ 44 47 47 37

−V 2.2 1.5 1.5 1.7

εF 0.8 0.9 1.0 1.1

−∆ 22 23 29 22

−V 1.4 1.7 1.8 1.7

15

εF 0.8 0.9 1.0 1.1

−∆ 62 62 61 61

−V 2.7 2.7 2.7 2.9

εF 0.8 0.9 1.0 1.1

−∆ 29 28 35 27

−V 2.1 2.1 2.5 1.2

εF 0.8 0.9 1.0 1.1

−∆ 16 19 21 21

−V 1.7 1.6 1.8 2.0

25

εF 0.8 0.9 1.0 1.1

−∆ 35 38 38 38

−V 2.3 2.4 2.4 2.8

εF 0.8 0.9 1.0 1.1

−∆ 17 17 21 16

−V 1.7 1.7 2.0 1.8

εF 0.8 0.9 1.0 1.1

−∆ 12 10 15 11

−V 1.2 1.7 1.8 1.4

Fig. 2. (a) Results of the canonical transformation approach with U/t = 2.5. −∆asympt as a function of the Fermi energy εF for
N = 4 (black boxes), N = 6 (empty triangles) and N = 10 (grey diamonds). The Fermi energy varies in the range 0.8 ÷ 1.1 t.
(b) −∆asympt as a function of N for N in the range 6÷36 with εF = t and average effective interaction V = 1.5 t. In both
figures −∆asympt is in units of t.

derivatives with respect to U/t at U = 0 was estimated
by using best fits and turned out to be 1.00003, while the
first derivative vanishes. The binding energy for U � t is in
the 10−3t range and by analyzing the four-body ground-
state wavefunction we assessed that the symmetry is 1E1

as predicted by the canonical transformation. Here, E1 is
a twice degenerate irrep of the Optimal Group [15] G that
breaks into A1 ⊕ B1 in C2v. This result encourages us to
proceed with larger and more physical systems.

We considered supercells of 2N × L = NC cells,
where L is the length of the (N,N) nanotube in units of
the lattice spacing. We solved the Cooper-like equation in
a virtually exact way for N up to 6 and L up to 25, using
U/t = 2.5 (which is of the correct order of magnitude for
graphite [18,19]). The canonical transformation overesti-
mates |∆| in this range of U/t, but remains qualitatively
correct.

The calculations are performed with the Fermi en-
ergy εF varying between 0.8 t and 1.1 t (half filling corre-
sponds to εF = 0). As in the (1, 1) cluster, the W = 0
singlets show pairing (see Tab. 1) albeit in general in
1A2, as expected. The binding energy −∆ of the pairs de-
creases monotonically both with the radius and the length
of the tube.

With supercell sizes NC > 300 numerical calculations
become hard. Since we are concerned with the asymptotic
behaviour for fixed N and L → ∞ and ∆(N,L) depends

on N and L in a complicated way, we need a method
to make reliable extrapolations of the numerical results.
To this end, like in previous work [9,20] we define the
average effective interaction V . This is such that setting
in equation (5) Weff = − V

NC
, with a constant V > 0 for

all k and k′ in D/4, one obtains the correct value of ∆. In
other terms, once the binding energy −∆(N,L) is known,
the constant V must be chosen in such a way that

1
V

=

1
NC

∑
k∈D/4

1
[2ε(k) + F (k)] − [2εF + Fmin(kF )] −∆(N,L)

·

(8)

In Table 1 we have reported V values; these remain
fairly stable around ≈ 1.5÷ 2 t for N > 2 with increasing
L. Therefore V is largely independent on the Fermi en-
ergy and on the radius and this allows us to extrapolate to
∆asympt(N) = limL→∞∆(N,L). For N = 4 andN = 6 we
use for the average effective interaction V the arithmetical
mean of the V values reported in Table 1 for L = 10, 15
and 25; the results are shown in Figure 2a together with
∆asympt(10) computed with V = 1.5 t. We found that
∆asympt is strongly dependent on the filling at fixed N ;
the sharp maximum at the optimal doping εF ≈ t (which
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corresponds to a number of electrons per graphite atom
of 1.25) can be understood in terms of a corresponding
peak in the density of states. In the optimally doped case
−∆asympt(N) decreases monotonically as the radius of the
tube increases, see Figure 2b. The decreasing of the bind-
ing energy with N is suggested by recent measurements
on nanotubes with diameter of few angstrom [7]. However,
in the limit of large N , ∆asympt(N) remains stable around
0.0028 t and may be interpreted as the binding energy of
the W = 0 pair in an optimally doped graphite sheet.

The paired state we have obtained here is essentially
two-dimensional, that is the transverse direction is crucial
to have a non-Abelian symmetry group and hence W = 0
pairs; the pairing mechanism uses degenerate electronic
states that exist in 2d and works away from half filling.
This opens up the interesting possibility that in nanotubes
two distinct superconducting order parameters appear in
the phase diagram, if it turns out that close to half-filling
there is another one due to a breakdown of the Luttinger
liquid [21].

Currently, intercalated graphite and carbon nanotubes
superconduct at much lower temperatures than high-Tc

Cuprates and the two kinds of materials are apparently
quite different. However, symmetry arguments based on
the W = 0 theorem tell us that, despite the obvious dif-
ferences, part of the story must be the same, i.e. by a
suitable choice of Dirac’s characters the on-site Coulomb
interaction is utterly turned off. This produces the sin-
glet pairing and constrains the ground state spin-orbital
symmetry of the interacting system.
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